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SUMMARY

This paper introduces the hybrid wavelet collocation–Brinkman penalization method for solving the
Navier–Stokes equations in arbitrarily complex geometries. The main advantages of the wavelet collo-
cation method and penalization techniques are described, and a brief summary of their implementation
is given. The hybrid method is then applied to a simple �ow around cylinders with both periodic and
non-periodic boundary conditions with Reynolds numbers in the range from 100 to 10 000 and the
results are discussed. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many problems in �uid mechanics are characterized by the presence of a wide range of
spatial and temporal scales, which are not distributed uniformly in space and time. In order
to solve these problems in a computationally e�cient way, the computational grid should
adapt dynamically in time. For the numerical algorithm to be robust, grid adaptation, i.e.
local grid re�nement and coarsening, should be based on the local demands of the solution
and not on ad hoc assumptions. A recently developed dynamically adaptive second-generation
wavelet collocation method [1; 2] is ideally suited for the solution of such problems. The
wavelet collocation method takes advantage of the fact that wavelets are localized in both
space and scale, and as a result functions with localized regions of sharp transition are well
compressed using wavelet decomposition. The adaptation is achieved by retaining only those
wavelets, whose coe�cients are greater than an a priori given threshold. Thus, high-resolution
computations are carried out only in those regions, where sharp transitions occur. With this
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adaptation strategy, a solution is obtained on a near optimal grid, i.e. far fewer grid points are
needed for wavelets than for conventional �nite-di�erence, �nite-element, or spectral methods.
In order to take full advantage of the adaptive wavelet collocation method and solve prob-

lems of engineering relevance, the algorithm must have the capability to handle realistically
complex geometries. The objective of this paper is to investigate the possibility of combining
the dynamically adaptive wavelet collocation method [1; 2] and Brinkman penalization [3] as
a way of simulating the presence of arbitrarily complex solid boundaries (which may be mov-
ing in time). The Brinkman penalization technique allows boundary conditions to be enforced
to a speci�ed precision, without changing the numerical method (or grid) used to solve the
equations. The main advantage of this method, compared to other penalization-type methods,
is that the error can be estimated rigorously in terms of the penalization parameter. It can also
be shown that the solution of the penalized equations converges to the exact solution in the
limit as the penalization parameter tends to zero [3]. The combination of these two methods
should allow us to perform numerical simulations of complex �ows in geometries of engi-
neering interest. Fluid-structure interactions (where the obstacles move in response to the �uid
forces) are a natural application of this technique, and they are currently under investigation.

2. PENALIZATION METHOD

2.1. General theory

Let us consider a viscous incompressible �uid governed by the Navier–Stokes equations

@u
@t
+ u · ∇u+∇P= ��u (1)

∇ · u=0 (2)

We consider here the case where the �uid occupies the complement in the plane R2 of
a set of obstacles Oi. The problem is solved in a rectangular domain �= [L1; L2]× [M1; M2]
containing all the obstacles Oi. To these equations are added appropriate external (in�ow,
out�ow and side boundary conditions), which are discussed further below.
On the surface of the obstacles the velocity must satisfy the no-slip condition,

u=0 on @Oi ∀i (3)

To model the e�ect of the no-slip boundary conditions on the obstacles Oi without explicitly
imposing (3) we replace Equations (1) and (2) with appropriate boundary conditions by the
following set of penalized equations:

@u�
@t
+ u� · ∇u� +∇P� = ��u� − 1

�
�0u� (4)

∇ · u� =0 (5)
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with appropriate external boundary conditions. Note that Equations (4) and (5) are valid in
the entire domain �. Here �¿0 is a penalization coe�cient and �0 denotes the characteristic
(or mask) function

�0(x; t)=
{
1 if x∈Oi

0 otherwise (6)

As �→ 0, it was proved theoretically [4] that the solutions of the penalized equations (4) and
(5) converge to that of the Navier–Stokes equations (1) and (2) with the correct boundary
conditions. More precisely, the upper bound on the global L∞ error of the penalization was
shown to be [4]

‖u − u�‖6C�1=4 (7)

In the speci�c case of impulsively started �ow over a plane, Kevlahan and Ghidaglia [5]
showed that the error is actually lower: O(�1=2).
This penalization has been implemented in a �nite di�erence code [3] for �ow around

a cylinder and was found to give very good results. In fact, the actual error was slightly
better, O(�). It is important to note that � is an arbitrary parameter, independent of the spatial
or temporal discretization, and thus the boundary conditions can be enforced to any desired
accuracy by choosing � appropriately. This property distinguishes the Brinkman method from
other penalization schemes and allows the error to be controlled precisely.
Another advantage of the Brinkman penalization is that the force Fi acting on an obstacle

Oi can be found by simply integrating the penalization term over the volume of the obstacle:
Fi=1=�

∫
Oi
u dx. Thus, the calculation of lift and drag on an obstacle can be made simply,

accurately and at very low cost.
In practice, we actually solve the penalized form of the vorticity equation,

@!
@t
+ u · ∇!= ��!− 1

�
∇× (�0u) (8)

where the velocity is found from the vorticity using the Biot–Savart law. In two-dimensions,
the Biot–Savart law has the following particularly simple form:

U (z)=
i
2�

N∑
n=1

�(zn)
z − zn

(9)

where z= x + iy, U = − u + iv, �(zn) is the circulation associated with the point zn (we
estimate this as the local vorticity times the associated grid block), and N is the total number
of grid points. Relation (9) may be solved approximately to a speci�ed tolerance using the
fast multipole method (FMM) developed by Greengard and Rokhlin [6]. This method is very
e�cient and reduces the computational complexity of the calculating the velocity from the
vorticity from O(N 2) to O(N ). We employ two types of external boundary conditions: doubly
periodic, and uniform in�ow (zero vorticity) with non-re�ecting side and out�ow conditions.
The vorticity formulation is preferred for two reasons. First, incompressibility equation (2)

is automatically satis�ed, and we do not need to compute the pressure. Secondly, in the context
of two-dimensional �ows, the vorticity is the physically relevant variable whose size and shape
are directly related to the physical phenomenon involved (instabilities, drag, lift etc.). This
means that adaptive wavelet compression is usually higher in the vorticity formulation than
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in the velocity formulation. The wavelet method used to adapt the grid dynamically to the
vorticity and to calculate derivatives is described in the following section.

3. DYNAMICALLY ADAPTIVE WAVELET COLLOCATION METHOD

The numerical method is formally derived by evaluating the governing partial di�erential
equations at collocation points, which results in a system of non-linear ordinary di�erential–
algebraic equations describing the evolution of the solution at these collocation points.
In this section we brie�y review the dynamically adaptive wavelet collocation (for more

details please see References [1; 2]). In particular, we will sketch e�cient wavelet-based
procedures for dynamic grid adaptation and calculation of spatial derivatives.

3.1. Grid adaptation

Grid adaptation occurs naturally in wavelet methods. To illustrate the algorithm, let us consider
a function f(x), de�ned on a closed two-dimensional rectangular domain �. We use tensor
product second-generation wavelets [7] constructed on a set of grids,

Gj= {xj
k ∈� : k∈Kj}; j∈J (10)

where k=(k1; : : : ; kn) and grid points x
j
k=(x

j
1; k1 ; : : : ; x

j
n; kn) are constructed as a tensor product

of uniformly or non-uniformly spaced one-dimensional grids. The only restriction is that each
individual set of one-dimensional grids is nested (xjm; kl

= xj+1m;2kl
, m=1; 2), which guarantees

the nestedness of the grids, i.e. Gj ⊂Gj+1. The procedure of constructing two-dimensional
scaling functions �j

k(x) and a family of two-dimensional wavelets  �; j
l (x), �=1; : : : ; 3 on

two-dimensional dyadic grid is described in References [2; 7]. Once wavelets and scaling
functions are constructed, a function f(x) can be decomposed as

f(x)=
∑
k∈K0

c0k�
0
k(x) +

+∞∑
j=0

3∑
�=1

∑
l∈L�; j

d�; j
l  �; j

l (x) (11)

For functions which contain isolated small scales on a large-scale background, most wavelet
coe�cients are small, thus we retain a good approximation even after discarding a large
number of wavelets with small coe�cients. Intuitively, the coe�cient d�; j

l will be small unless
the f(x) has variation on the scale of j in the immediate vicinity of wavelet  �; j

l (x). In fact,
the error incurred by ignoring coe�cients with magnitude lower than � is O(�). More precisely,
if we rewrite Equation (11) as a sum of two terms composed, respectively, of wavelets whose
amplitude is above and below some prescribed threshold �, i.e. f(x)=f¿(x) + f¡(x), then
it can be shown [1; 2; 8] that

|f(x)− f¿(x)|6C1�6C2N−p=n (12)

where N is the number of signi�cant wavelet coe�cients, p is the order of the wavelets, and
n is the dimensionality of the problem.
In order to realize the bene�ts of the wavelet compression, we need to be able to reconstruct

the f¿(x) from the subset of N grid points. Note that every wavelet  �; j
l (x) is uniquely

associated with the collocation point. Consequently, the collocation point should be omitted
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from the computational grid if the associated wavelet is omitted from the approximation. This
procedure results in a set of nested adaptive computational grids Gj

¿⊂Gj, such that Gj
¿⊂G

j+1
¿

for any j¡J − 1, where J is the �nest level of resolution present in approximation f¿(x).
When solving the evolution equations, an additional criterion for grid adaptation should be

added. The computational grid should consist of grid points associated with wavelets whose
coe�cients are signi�cant or could become signi�cant during a time step. In other words,
at any instant in time, the computation grid should include points associated with wavelets
belonging to an adjacent zone of wavelets for which the magnitude of their coe�cients is
greater than a priori prescribed threshold. We found that the optimal adjacent zone includes
the nearest points at the same, one higher, and one lower level of resolution.

3.2. Calculation of spatial derivatives on an adaptive grid

When solving partial di�erential equations numerically, it is necessary to obtain derivatives
of a function from its values at collocation points. In this section we describe an e�cient
procedure for calculating spatial derivatives [1; 2], which takes advantage of the multiresolu-
tion wavelet decomposition, fast wavelet transform, and uses �nite-di�erence di�erentiation.
In other words, we make wavelets do what they do well: compress and interpolate and make
�nite di�erence do the rest: di�erentiate polynomials.
The di�erentiation procedure is based on the interpolating properties of second-generation

wavelets. We recall that wavelet coe�cients d�; j
l measure the di�erence between the approx-

imation of the function at the j + 1 level of resolution and its representation at the j level
of resolution. Thus if there are no points in the immediate vicinity of a grid point xj

k, i.e.
|d�; j
m |¡� for all the neighbouring points, and points xj+1

(2k1±1;2k2±1) are not present in G
j+1
¿ , then

there exist some neighbourhood of xj
k, where the actual function is well approximated by a

wavelet interpolant based on cjm.
Thus, di�erentiating this local polynomial gives us the value of the derivative of the function

at that particular location. Let us denote by D
j
¿ a collection of such points at each level of

resolution. Then the procedure for �nding derivatives at all grid points consists of the following
steps: First, knowing the values of a function on an adaptive computational grid G¿, perform
wavelet transform. Next, recursively reconstruct the function starting from the coarsest level
of resolution. On each level of resolution j �nd derivatives of the function at grid points
that belong to D

j
¿. At the end of the inverse wavelet transform we have derivatives of the

function at all grid points. The computational cost of calculating spatial derivatives is roughly
the same as the cost of forward and inverse wavelet transforms.

3.3. Numerical algorithm

The three basic steps of the numerical algorithm are then as follows (bold symbols denote
n-dimensional vectors u ≡ (u1; : : : ; un) and k ≡ (k1; : : : ; kn)):
(1) Knowing the values of the solution uk(t) on Gt

¿, we perform the wavelet transform
for each component of the solution. For a given threshold �, we adjust Gt+�t

¿ based
on the magnitude of the wavelet coe�cients.

(2) If Gt
¿ and Gt+�t

¿ are identical, we go directly to step (3). Otherwise, we interpolate
the solution to the collocation points Gt+�t

¿ , which are not included in Gt
¿.
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(3) We integrate the resulting system of ordinary di�erential equations to obtain new
values uk(t +�t) at positions on the grid Gt+�t

¿ and go back to step (1).

With such an algorithm, the grid of collocation points adapts dynamically in time to follow
local structures that appear in the solution. Note that by omitting wavelets with coe�cients
below a threshold parameter �, we automatically control the error of approximation. Thus,
the wavelet collocation method has another important feature: active control of the accuracy
of the solution. The smaller � is chosen to be, the smaller the error of the solution is. In
typical applications the value of � varies between 10−2 and 10−6, assuming that the unknown
dependent variables have been properly normalized. As the value of � increases, fewer grid
points are used in the solution.

3.4. Time-integration algorithm

In this paper we use the sti�y stable Krylov subspace time-integration algorithm of Edwards
et al. [9]. The main motivations to use the Krylov time-integration algorithm are the fol-
lowing: �rst the Krylov time-integration method is sti�y stable (for the linear part of the
equation), uses an adaptive time step, and allows the order of the time-integration to be
adjusted easily by changing the dimension of the Krylov sub-space. Secondly, the Krylov
time-integration algorithm does not require explicit construction of the discretized linear oper-
ator, but rather evaluation of its action. The latter property is particularly important, since the
wavelet collocation algorithm calculates derivatives directly without construction of discrete
spatial derivative operators. At high Reynolds numbers, the Laplacian term of the vorticity
equation is another source of sti�ness, and thus a sti�y stable method is also necessary for
calculating high Reynolds number �ow.

4. RESULTS

We have applied the adaptive wavelet-based method described in the previous sections to
calculate �ow around a stationary cylinder with periodic and non-periodic external boundary
conditions with Reynolds numbers from 100 to 10 000. In this section we present results from
a simulation at Re=550. This example is especially illustrative since we can make direct
comparisons with results from the vortex method of Koumoutsakos and Leonard [10].
The cylinder has a diameter of one and is placed at the origin of a domain with dimen-

sions [−2:5; 7:5]× [−5; 5]. The maximum resolution is 10242, �=10−6, �=10−3. Numerical
di�erentiation is eighth-order accurate (i.e. we use wavelets with eight zero moments). The
tolerance of the Krylov time-integration scheme is set to 10−4, and the dimension of the
Krylov subspace is 20. The �ow is impulsively started at t=0.
Figure 1 shows a comparison of the drag results obtained here with those obtained by

Koumoutsakos and Leonard [10]. Note the good qualitative and quantitative agreement, despite
the di�erence in the methods.
Plate 1 shows the vorticity �eld and dynamically adapted grid at t=40, when the vortex

shedding is well established. It is interesting to see how the adaptive wavelet method has
placed grid points only where they are needed to resolve the developing vorticity and the
boundary layer near the obstacle.
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Figure 1. Drag around an impulsively started cylinder at Re=550. Comparison
with the vortex method [10].

5. FUTURE WORK

The combination of the penalization method (for introducing obstacles with complicated
shapes) with the wavelet method (for solve the vorticity equation on a dynamically adapting
grid) appears to be working reasonably well for a stationary obstacle and two-dimensional
�ow. We have also con�rmed numerically that the overall complexity of the method is O(N )
where N is the number of grid points (or wavelets) actually used.
Two extensions of this work are currently under investigation. First, the application of the

method to moving obstacles. The obstacle may move due to an external force, or may move
in response to the �uid forces it experiences. Applying our method to moving obstacles will
allow us to investigate a variety of problems in �uid–structure interaction. The second research
direction is to extend the method to three-dimensional �ow.
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Plate 1. Vorticity �eld and adapted grid at t=40.
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